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INFLUENCE OF STRONG SELF ELECTRIC FIELDS ON THE ION RESONANCE INSTABILITY

IN A NONNEUT RAL PLASMA COLUMN

Ronald C. Davidson*
Division of Magnetic Fusion Energy

Energy Research and Development Administration
Washington, D. C. 20545

Hwan-’eup Uhm
Department of Physics and Astronomy

University of Maryland, College Park , Md. 20742

The influence of strong self—electric fields on the ion resonance

instability is examined for a cyl indrical nonneutral plasma column

immersed in a uniform axial magnetic field 
~~~~ 

The analysis is

4 carried out within the framework of a macroscopic cold—fluid model,

and electrostatic stability properties are investigated for the case

of rectangular electron and ion density profiles. The parameter

tS
~

(2w
~e

/w
~e
)(l_f) is introduced as a convenient measure of the relative

strengths of the equilibrium self—electric force and the magnetic force

on an electron fluid element. (Here, ~ is the electron plasmape

frequency , W e 
is the electron cyclotron frequency , f.’n~ /n~ is the

fractional charge neutralization , and ~~l corresponds to the maximum

allowed charge density for radial conf inement of the equilibr ium

configuration.) An important conclusion of this study is that the

equilibrium self—electric field can have a large influence on stability

behavior. In particular, stability properties for ~~l differ

substantially from those obtained when 5<< l .  Moreover , for a

nonneutral plasma column with significant charge neutralization,

it is found that the fundamental mode (L”l) is not the most unstable

mode. Rather , higher harmonic perturbations have larger growth rates.

However , in the limiting case where f< cl  and 6<<l , the £~ l mode can

have the largest growth rate, which is consistent with the result

previously obtained by Levy et al.

leave of absence from the University of Maryland , College Park, Md.
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1. INTRODUCTION

There have been several recent experimental and theoretical

studies of the fundamental equilibrium and stability properties of

nonneutral plasmas1 in both m irror2 ~ and unif orm6~~° magnetic f ield

configurations. Perhaps one of the most basic instabilities that

characterizes a nonneutral plasma with both electron and ion

components is the ion resonance instability.~~~~
3 In cylindrical

geometry (Fig. 1), the ion resonance instability can be described

as a two—rotating—stream instability
11 in which the relative rotation

between electrons and ions is produced by the equilibrium self—

electric f ield E0(r)~~ . Previous analyses11’12 of this instability

have been restricted to low beam densities and small values of

fractional charge neutralization, i.e.,

2w
:.~ 2~~ 

(i f) << 1
W 

f < < l .

Here, 
~pe is the electron plasma frequency, W is the electron cyclotron

frequency, and f—n~/n0 is the fractional charge neutralization

provided by the positive ion background. In this paper, we investigate

the influence of strong self—electric fields on the ion resonance

instability in a nonneutral plasma column with rectangular electron

and ion density profiles (Fig. 2). The analysis is carried out within

the framework of a macroscopic model, treating the electrons and ions

as cold (T~-iO) fluids immersed in a uniform axial magnetic field ~~~~
Moreover , the stability studies assume electrostatic perturbations

with infinitely long axial wavelength (~/az—O).

It is useful to introduce the dimensionless parameter

L -
~~~~~~

-
~~~
-“-- - -

~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(1 1)

which is a tseasure of the characteristic relative strength of the

equilibrium self—electric force and the magnetic force on an

electron fluid element. In the present equilibrium and stability

analysis, the parameter tS and the fractional charge neutralization

f are allowed to span the range of values

a < ’ s < l ,

and

O < f < l ,

where ó l  corresponds to the maximum allowed charge density for radial a

confinement of the equilibrium configuration. One of the most important

conclusions of this study is that the equilibrium self—electric field

can have a large influence on stability behavior. In particular ,

stability properties for ~~l differ substantially from those obtained

when â<<l (see, for example, Fig. 5). Moreover, for a nonneutral

plasma column with significant charge neutralization, it is found

that the fundamental mode (~~l) is not the most unstable mode.

Rather, higher harmonic perturbations have larger growth rates (see,

for example, Figs. 8 and 9). However, in the special limiting case

where f<<l and tS<<l, the £=l mode can have the largest growth rate,

which is consistent with the result previously obtained by Levy et al.12

[Fig. 8].

The outline of this paper is the following. In Section 2, we

give a brief description of the theoretical model (Section 2.A) and

summarize the equilibrium properties for general density profiles

j—e,i (Section 2.8). The corresponding eigenvalue equation

I
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that describes the electrostatic stability properties of the nonneutral

plasma column is derived in Section 3.A [Eq. (13)]. In Sections 3.B

and 3.C , the eigenvalue equation is solved for the case where the

electron and ion density profiles are rectangular [Eqs . (2 0)— (22)] .

This leads to a fourth—order algebraic dispersion relation that

determines the complex eigenfrequency w [Eq . (26)]. A detailed

numerical analysis of the dispersion relation is presented in Section 4 ,

where stability properties are investigated for a broad range of

plasma parameters w2 / w ,  f , etc.

Finally , we emphasize that the present analysis is based on a

•1 macroscopic cold—fluid model in which the ion (and electron) motion

is assumed to be laminar. Although this is a reasonable approximation

when r <<R ’ (where r is the characteristic thermal ion Larmor
L i p  Li

radius, and R~ is the radius of the plasma column), we expect signif—

icant modifications to the stability behavior when rLi~
R
P
. The

influence of finite ion Larinor radius effects on the ion resonance

instability is currently under investigation14 within the framework

of a hybrid Vlasov—fluid model, which treats the electrons as a

macroscopic, cold fluid and the ions in a fully kinetic (Vlasov)

manner.

- - - .
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2. ThEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

2.A Theoretical Model

As illustrated in Fig. 1, the equilibrium configuration consists

of a cylindrically symmetric nonneutral plasma column that is infinite

in axial extent and aligned parallel to a uniform applied magnetic f ield

B~~~. The mean motion of the plasma components is in the azimuthal

direction, and the applied magnetic field provides radial confinement

of the plasma column. As shown in Fig. 1, the characteristic radius

of the plasma column is denoted by ~~ and we introduce a cylindrical

polar coordinate system (r ,e,z) with the z axis coinciding with the axis

of symmetry; r is the radial distance from the z axis, and 0 is the polar

angle in a plane perpendicular to the z axis. The deviation from equil-

ibrium charge neutrality [n~(r),1n~(r)] produces an equilibrium

radial electric field 
~
°(
~
)1IE°(r)

~ r 
that influences the azimuthal motion

of the plasma components.

The following are the main assumptions pertaining to the equilibrium

and stability analysis:

(a) Equilibrium properties are independent of z (~ /az 0) and

azimuthally symmetric (~/a0=O) about the z axis. For example ,

the mean equilibrium velocity of component j (je,i) can be expressed

as ~~~ i’1V~9
(r)~ 0, where 

~~~
is a unit vector in the 0 direction , and

aV~8/ a e— O—av0
0 /a z.

(b) For presen t purposes , the electrons and ions are treated as

cold (T~~I.O) fluids Immersed in the uniform axial magnetic field 
~~~~

Within the context of the electrostatic approximation (rB0~ 
and

the equation of motion and continuity equation for each plasma

component (j”e,i) can be expressed as

- .— - - - -- .
-~~~~

. - -- - - - ---.—- - - - , - - -  - ——I l
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(fr. + • V) — ;i. (
~ 

+ ~~ (1)

(2)

where ~(~ ,t) —V$(~ ,t) is the electric field, n~(~ 1t) is the density,

is the mean velocity, and ej  and m
j 

are the charge and mass~

respectively , of a particle of species J. In Eq. (1), the spatial

variation in B
0 
is neglected (low—beta approximation), and the

electrostatic potential •(~ ,t) is determined self—consistently from

Poisson ’s equation

V 2
4, 4ne(n _n

~) ~ (3)

where —e is the electron charge.

(c) In the stability analysis, flute perturbations with 3/~ z 0

are considered. All quantities are expressed as an axisymmetric

equilibrium value plus a perturbation , i.e.,

Assuming perturbations with azimuthal harmonic number 2 , the quantity

6*(~,t) is then expressed as

~~2,(r) exp [i(~ O—wt)] , (4)

H where w is the complex eigenfrequency.

2.B General Equilibrium Properties

An equilibrium analysis of Eqs. (l)—(3) for general steady—state

(a/at—O) profiles, n~ (r) , V~0(r) and $°(r) , proceeds in the following

manner. First, it is straightforward to show from Eq. (2) that the

functional form of the density profile n~ (r) can be specif ied

arbitrarily. Moreover, from Eq. (1), equilibrium force balance in the a

1

— - ~— —.~—- 
__ . . _ _~~~~~;~~~•__~~~~__ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,.~ - —--—- -——-—— - -—- ——
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$ radial direction can be expressed as ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

or equivalently

w
j
+E
j
w
j
w
j
_C

J
W
EW f

O , (5)

where c
j
_sSnej~ wcj~~

IejIBø
/m
j

c is the cyclotron frequency,

V~0
(r)/r is the angular velocity of a fluid element, and WE

(r) is

the angular frequency def ined by

c O  c 3  0w =—----— E — — — — — f  . (6)E rB0 r rB0 3r

Finally, the equilibrium electrostatic potential +
0(r) is determined

self—consistently from the steady—state Poisson equation

13  9 0 0 0
— r 4 =4ire(n

e
_n
i) ~ 

(7)

where n~ (r) and n~(r) are the equilibrium electron and ion density

profiles. We note from Eq. (5) that there are two allowed equilibrium

values of Solving Eq. (5) for gives

1/2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J (8)

where the upper sign (w
j
=w~) corresponds to a “fast” rotational

equilibrium, and the lower sign (w~=wT) corresponds to a “slow”
rotational equilibrium. Evidently, in the limit of equilibrium

charge neutrality with W
E

O
~ 

it follows from Eq. (5) that w~~—c~w~~

and W
J

~I~O•

_____________________________ -
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3. ELECTROSTATIC STABILITY PROPERTIES

3.A General Eigenvalue Equation

To investigate electrostatic stability behavior, we make use

of Eq. (4) and linearize Eqs. (l)—(3) about the axisymmetric equilibrium

state characterized by n~ (r) , ~~~~~=w~ (r)r~0. and

This readily gives

_i(w_ Lw
j

)6V
jr
_ (c

j
w j

+2w
j
)
~~j0 

= - ‘ -

~~~~~ ~~ ‘ 
(9) 

-

+ ~ 
-
~~~~~ (r~w~) 

~~~~~~~~~~~ 

= - I ~~~ (10)

i2.n~~V_i(w_Lw~)~~~ +~~~
-
~~ 

(rn~ 6V~~) + = 0 • (11)

~ f 
r f S4 — = _41r~e~6i~ , (12)

where the index 9. has been suppressed on the perturbation amplitudes

4SVjr
(r)

~ ~S3(r), etc. It is evident from Eqs. (9)—(ll) that the

perturbations in density and mean fluid velocities can be expressed directly

in terms of 54(r). After some straightforward algebra, Eq. (12)

becomes

~~ [r(1. - 

~~~~~

(13)
r j v ~ U

= — I~ ~~~ ~w~~ +2w~ ))

where ~~~~~~~~~~~~~~~~~~~ and v~(r) is defined by

v~ (r)=(w_Lw j)
2_ (€

j
w
cj+2wj)[cjwcj + 4~~ (r

2
wj)) 

. (14)

The eigenvalue equation (13) can be used to calculate the eigenfunction

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________
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tS+(r) and complex eigenfrequency w for a broad class of equilibrium

profiles n~ (r) and w
j
(r) consistent with Eqs. (5)—(8).

3.B Eigenvalue Equation for Sharp—Boundary Equilibrium

For present purposes, we specialize to the case where the electron

and ion density profiles are rectangular [Fig. 21, i.e.,

n const., 0<r<R
O 

p
n (r) = (15)

0 , R < r<R
p c

and fn =const., 0<r<R
0 ~ 

0 p
n~ (r) = (16)

0 R <r<R
p C

where f=const.=fractional charge neutralization, and r R
~ 
is the radial

location of a grounded conducting wall. From Eqs. (7), (15) and

H (16) , we find ~°(r)=nen0(1—f)r
2 inside the plasma column (0<r<R ~).

Making use of Eq. (6), the equilibrium frequency can be expressed

as
27ren

0
c

WE 
= 

B (1—f) = const. (17)
0

Substituting Eq. (17) into Eq. (8) gives

1/2

and 

W
e 

= = ~~~ 
{l 

± ( 1 -  
:~~~~~~

1
~ f )  

1/2 

(18)

w = = - 
ci 

[1 
± (1 + I pe (1_ f))  ] , 19

I i 2 m 2
4 e w

where 
~~e

4
~~0

e2/
~
m
e
. It is evident from Eq:. (18) and (19) that the

angular velocity profiles W
e and w~ are uniform (independent of r)

for the electron and ion density profiles illustrated in Fig. 2.



-~-r 
- ~~~~-__ ,-- -, -

10

For the rectangular density profiles prescribed by Eqs. (15)

and (16) , the eigenvalue equation (13) can be expressed as

(20)

v Wpj ~~~~~ ~5~ r— R -

r L 2 W— 9.U) pi v
i 

i

where

) 2~ (c~w ~+2w~ ) 
2 t (21)

and W const . ,  O<r<R
2 

p
w~~ (r) = (22)

0 , R < r <R

In Eqs . (20) and (22) ,~~~
2 4rn 0e2 /m and ~

2
1=4~ fn 0e2 /m1, and use has

been made of 9w /~r=-~
j .cS (r—R ) .

p

3.C Dispersion Relation for Sharp—Boundary Equilibrium

Except at the point r=R , it is clear from Eqs. (20)—(22) that

da3 (r) satisfies the vacuum Poisson equation r 1(9~ 9 r) [r 3/ 9 r 1_ ( 9 . 2 /r 2) Sq ~~O.

Therefore, the solution to Eq. (20) can be expressed as

ck r<R , (23)

inside the plasma column, and

22. 29..t ( 1—R /r  )
63 0 (r) = A(j . ) ( l—R 22. 1R 22. ) 

Rp<r<_ Rc 
(24)

in the vacuum region between the surface of the plasma column and the

conducting wall. Note that the perturbed potential is continuous

at the surface of the plasma column with 1
(r=R )= 0(rR)A.

Moreover , the perturbed potentia l van ishes at the conducting wal l ,
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i.e., S60(r=R~)
1u1O .

The dispersion relation that determines the complex eigenfrequency

w is obtained by multiplying Eq. (20) by r and integrating from

R~ (1_ c) to R~ (1+c)~ with c-a O+. This gives

R [ -
~ ~3~) - R (i - 

~ ~ 
{-h i) r=R

(25)
w c EL) .+2w.

= £~~ ( r R  ~ Y _EI J C) 
~

p 2 w— 9.w.j v
j j

Substituting Eqs. (23) and (24) into Eq. (25) and rearranging terms,

we obtain

E L ) .

0 —  1 (26)— 

l_ (R
p/R c) 22 , 

~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Throughout the remainder of this article, we assume that the electron

and ion equilibria are rotatin g in the “slow” rotational mode with

4 , and w1 w . (27)

In this case, Eq. (26) can be expressed as

1 
— ~pe

l_ (R
p /Rc) 22. 2( w—L

~
)
~

) [ (w_ 2 .we)_ (w:_ we) 1
(28)

pi
- - + _  ,

2 (w—9.w1) [ (w—9.w . ) — ( w~ —w~ ) ]

where w~ and w~ are defined in Eqs. (18) and (19) . The linear

dispersion relation (28) can be used to investigate electrostatic

stability properties for a broad range of plasma parameters f,

~ 2 2w /w , etc.
pe c e

As a point of reference, we note that the ion resonance instability

has previously been studied in the low—density, low—frequency regime
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11,12
characterized by

pe (l—f) c<l
W e (29)

+ -w_ Lwe k<Iwe
_w
e I

Within the context of the inequalities in Eq. (29), the linear

dispersion relation (28) can be approximated by

1 + 
Wpe

l— (R /R )
2 & 2w (w Lw~)p c 

~2 
(30)

— 
up1

- + -2 ( ca1- 2.wi
) [(w-

~~~i
) — ( w i—w j ) 1

- + -where use has been made of w ~w.. and w —w w [Eqs. (17), (18)e r~ e e ce

and (29)]. Equation (30) is identical to the dispersion relation

obtained by Levy et al.11 within the framework of a fluid model

irt which the electron motion is approximated by )(~=c(~,x )/B
0
.

4
Throughout the remainder of this article, Eq. (30) iS referred to

as the “reference dispersion relation” (RDR). In order to assess

the influence of strong self electric fields on stability behavior

[2(&)
~e

/w
~e
)(l_f)<l]

~ 
it will be useful, from time to time, to

compare the stability information obtained from the unexpanded

dispersion relation (28) with that obtained from Eq. (30). In this

regard , we emphasize that the inequalities in Eq. (29) pose a particularly

severe limitation on the range of validity of Eq. (30). The present

paper is intended to alleviate this situation by a thorough investigation

of the unexpanded dispersion relation (28).

Ill.. .L~-_~-_.- - ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
- - -

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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3.D Dimensionless Parameters

It is evident from Eqs. (l7)—(19) and the linear dispersion

relation (28) that the four dimensionless parameters

m R
_.2.~ ~ ._!~ _1.
2 ‘ ‘ m ‘ R 

(31)
EL) I C

can be used to cha::cterize the plasma equilibrium. Moreover, an

important dimensionless parameter that measures the strength of

the equilibrium electric force on an electron fluid element Is

[Eq . (8) ]

w

~ 
E 

= 
pe (1—f) , (32)

W c u~ce

which can be constructed from the dimensionless parameters in Eq. (31).

Because

2 
(1—f) < 1 (33)

EL)
4 ce

is necessarily required for existence of the electron equilibrium

[Eq. (18)], we note from Eqs. (32) and (33) that 6 can span the

range 0<6< 1.

For future convenient reference, in Fig. 3 are shown plots of

W E/W ce 
[Eq . (17)], We/W ce [Eq. (18)] and ~~ /W j  

[Eq . (19) ] versus

the dimensionless parameter 6=
e/ e

)(]
~
_f) for me/mj l/l836.

In the limit of maximum charge density for existence of the equilibrium

H ~6 l) , we note from Fig. 3 that u4/wcf~~(mi/4me)
ihI2 and w

~
/w ce

=O
~
5
~

Finally , in Fig. 4, we illustrate the region of the parameter

space ‘~~e
”
~~e~ 

corresponding to existence of the equilibrium

[Eq. (33)]. Note that the equilibrium electron density can exceed the

Brillouin flow limit (~ 2 /~
2 
=0.5) provided there is sufficient

pe ce
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charge neutralization that

4. STABILITY ANALYSIS

The growth rate y— Imw and real oscillation frequency wr~
Rew have

been obtained numerically from Eq. (28) for a broad range of plasma

parameters f , ~2 ,~
2 and R /R - In this section , we summarize thepe ce p c

essential features of these stability studies. The analysis is

restricted to nonneutral proton—electron plasmas (mj /me
ii l836) ,

and the growth rate and real frequency are measured in units of

the lower hybrid frequency

WLH ( w w i) -

In order to illustrate the need for an improved dispersion

relation at large beam densities, Fig . 5 shows a plot of the

normalized growth rate Y/WLH and oscillation frequency Wr /W LH

versus W / W  obtained from Eq. (28) ( the unexpanded dispersion

relation) and Eq. ( 30) (the reference dispersion relation) , for L—2 ,

Rp /Rc~ O~ 5 and f 0.45. Note that Wr /WW is plotted only for the

range of 
~~ el’Wc

2
e corresponding to instability (y> O) . Moreover , the

abscissa in Fig. 5 extends to 
~~e

/’(
~~e~

0 9 1
~ 

since physically allowed

equilibria exist for 
~~e~~~ e~

0 5/  —0.45)”0.9 1 [Eq . (33) and Fig . 4 ].

Several points are noteworthy in Fig. 5. First , the unexpanded

dispersion relation (28) predicts instability for O<i~~ /w 2 <0. 34 ,

whereas the reference dispersion relation ( 30) predicts instability

for the entire range of allowed equilibrium density , O<
~~ e/w~ e<O

~
9l

~
Second , the maximum growth rate can be a substantial fraction of WLB~
In particular , for the parameters assumed in Fig. 5, the maximum



~ 
—

~~~~~~~~~~ 

-

~~~~~

growth rate obtained from Eq. (28) is Y~~fO.36 w~~ , which occurs 

15

- 
- for w

~~ /W~e~0•24• Finally , it is evident from Fig. 5 that the reference

dispersion relation (30) breaks down at rather modest values of beam

density (
~~e

/w
~e~

O•l)i thereby underlining the need for the improved

dispersion relation in Eq. (28). Throughout the remainder of this

section, the stability analysis is based entirely on Eq. (28).

Stability boundaries in the parameter space (f , w2 1w2 ) are

illustrated in Figs. 6 and 7. In Fig. 6, the solid curves correspond

to the stability boundaries (y—O) obtained from Eq. (28) for £—l ,

and several values of R
~

/R
~
. For a given value of R/R , the region

~~ ~~ ~~~~~~~ 
parameter space above the curve corresponds to

instability (-p0), whereas the region of parameter space below the

curve corresponds to stability (y—O) . For low beam densities

(small values of w 1w ) ,  it is evident from Fig. 6 that thepe ce

system is stable for L l , provided R1,/R is sufficiently small.

On the other hand , for high beam densities, wall stabilization

occurs provided R1,/R is suff icient ly large, i.e., provided the

conducting wall is located sufficiently close to the plasma surface.

In Fig. 7, the solid curves correspond to the stability boundaries

obtained from Eq. (28) for R/R —O.5 and several values of azimuthal

mode number 9.. For a given density of physical interest (
~~e

/w
~e

>0
~
0l
~

say) , we note that the number of unstable modes increases rapidly

as the fractional charge neutralization f is increased to sufficiently

large values.

The dependence of stability properties on fractional charge

neutralization is further illustrated in Figs. 8 and 9 where the

normalized growth rate 1/WLH and oscillation frequency Wr/WLR are

~

-

~

, - —-

~

- —,~~ —~-~~- - - -~~——~~~~~ ~~~~~~~~~~~~~~~~~~~ 
— 

________
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plotted versus f for w
2 /w2 —0.01 (Fig. 8) and 

~~e
/w
~e~

0•5 (Fig. 9),

and several values of mode number £. Also, Rp/R
~
uII0.5 is assumed in

Figs. 8 and 9. In Figs. 8(b) and 9(b), Wr/WJ.JI is plotted only for the

ranges of f corresponding to instability (-p0). Note the rapid increase

in the number of unstable modes when f is increased to sufficiently

large values. Several important features are evident from Figs. 8 and

9. First, for the low-density case illustrated in Fig. 8 e/
’
~~e

0 01)
~

we note that only the fundamental mode (L—l) is unstable when f<O.13.

This is consistent with the results previously obtained by Levy et al.

for 2 ,~
2 
, fcc1. Second, the maximum growth rate for each modepe Ce

number £ is a slowly increasing function of f .  Evidently, as the

fractional charge neutralization f approaches unity, the number

of unstable modes tends to infinity within the context of the present

cold—fluid model. Moreover, in the limit of equilibrium charge

neutrality (f—l), the self electric field is equal to zero and the

plasma column is stable (y— O in Figs. 8 and 9). Finally, for low

beam densities, we note that the real frequency Wr exhibits a

nearly linear dependence on fractional charge neutralization f

(Fig. 8). In contrast, when the equilibrium self—electric field

is sufficiently large (Fig. 9), w exhibits a strongly nonlinear

dependence on f .

Shown in Figs. 10 and 11 are plots of normalized growth rate

and oscillation frequency Wr IWLH 
versus 

~~e
’
~
’
~ce for f 0.l

(Fig. 10) and f—0.8 (Fig. 11), and several values of mode number 9..

Also , R~/R 0.5 is assumed in Figs. 10 and 11. For small values of

fractional charge neutralization, it is evident that the fundamental

mode (L 1) is the most unstable mode. For example, for the f—O.l case
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shown in Fig. 10, the maximum growth rate 
~~M~~

’0
~
°93 wLH) occurs for

ti”l and 
~~e

I’
~~e~

0
~
12 This is in contrast with Fig. 11, where the

maximum growth rate for f 0.8 (y~~f
2.4 w~~) occurs for &—3 and

~~~e~~~~e
hh12 5 (the maximum allowed density for radial confinement).

Furthermore, for the f 0.l case shown in Fig. 10, we note that the

ion resonance instability is completely stabilized above some

critical value of beam density (
~~e

/w
~e
>O•17)• On the other hand ,

for larger values of fractional charge neutralization (f—0.8 in Fig. 11),

it is evident that instability exists for the entire allowed range of

Wpe/Wce • Moreover, several mode numbers 2. are unstable for a given

value of 
~

2
eIW 2 

, a feature generally characteristic of a nonneutral

plasma column with significant charge neutralization (see also Figs. 7-9).

Of considerable interest for experimental application is the

stability behavior for specified values of f ~2 
~~~ and R /Rpe ce p C

Typical results are shown in Figs. 12 and 13 where YI W LH and Wr /EL
~~E

are plotted versus mode number 2. for 
~~e

/ e”0
01 (Fig. 12) and

w2 /w2 =O.5 (Pig. 13), and several values of fractional charge

neutralization f. Also, R/R —0.5 is assumed in Figs. 12 and 13,

and graphical results are presented only for the unstable mode

numbers with y>0. For the low—density case in Fig. 12, we note that

maximum growth occurs for L—2 when f.O.2, and for £“12 when f”O.8.

Evidently, for low beam densities, there is a broad spectrum of

unstable modes when the fractional charge neutralization is sufficiently

large. On the other hand , for higher beam densities, fever unstable

modes are excited. For example, in Fig. 13, maximum growth occurs

for £—l when f—0.2, and for 2.—S when f—O.8. Comparing Figs. 12 and

13, we also note that the maximum growth rate (measured in units of WLH)

is larger in the high—density case (Fig. 13) than in the low—density

k.. L_ - - - - -—- ~~~~~~~~~~~~~~~~~ 
, —=~~~~~~~

-
~~~~~~~~~ “ 
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case (Pig. 12).

We conclude this section by emphasizing that stability properties

also exhibit a sensitive dependence on the location of the conducting

wall. This is illustrated in Fig. 14 where the normalized growth

rate y/w~~ and oscillation frequency Wr/W
~~ 

are plotted versus R
~
IR
~

for t 1 , 
~~e

/w2euuO~55 and several values of fractional charge

neutralization f. Evidently, the L—l mode is stabilized whenever

the conducting wall is located sufficiently close to the plasma surface.

Moreover, as f is increased, the conducting wall must be situated

even closer to the plasma surface to assure stability. A qualitatively

similar dependence of stability behavior on R/RC 
is obtained for

higher £ values.
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5.. SUMMARY AND CONCLUSIONS

In this paper, we have examined the influence of strong self—

electric fields on the ion resonance instability in a nonneutral

plasma column. The analysis was carried out within the framework

of a macroscopic cold—fluid model (Section 2), and electrostatic

stability properties were investigated in detail for the case of

rectangular electron and ion density profiles (Sections 3 and 4).

One of the most important conclusions of this study is that the

equilibrium self—electric field can have a large influence on

stability behavior. In particular, stability properties for 6~l

differ substantially from those obtained when 6c<l (see, for example,

Fig. 5). Moreover, for a nonneutral plasma column with significant

charge neutralization, it is found that the fundamental mode (9. l)

is not the most unstable mode (see, for example, Figs. 8 and 9).

However , in the special limiting case where f<<l and 6<<l , the 9, l

mode can have the largest growth rate , which is cons istent with the

result obtained previously by Levy et al.’2

Finally, we emphasize that the present analysis is based on a

macroscopic cold—fluid model in which the ion (and electron) motion

is assumed to be laminar. Although this is a reasonable approximation

when rLi
c(R (where rLi is the characteristic thermal ion Larmor radius),

we expect significant modifications to the stability behavior when

rLi \R . The influence of f ini te  ion Larmor radius effects on the

ion resonance instability is currently under investigation14 within

the framework of a hybrid Vlasov—fluid model , which treats the

electrons as a macroscopic , cold fluid and the ions in a fully kinetic

(Vlasov) manner.
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

Fig. 2 Rectangular density profiles for electrons and ions

[Eqs. (15) and (16)].

Fig. 3 Plots of (a) w
E/w e 

[Eq. (17)]. (b) W
~

/
~
Wce 

[Eq. (18)]

and (c) W~ ’w 1 [Eq. (19)] versus S=(2~~e
/w
~e
)(l_f) for

m1/m =1836.

Fig. 4 The shaded region of the parameter space ‘~~~e”~~ e~ 
corres—

ponds to physically allowed equilibria satisfying f
~

l_W
~ e/ 2&)

~ e•

Fig. 5 Plots of (a) growth rate y and (b) real frequency Wr versus

obtained from Eq. (28) and the reference dispersion

relation (30) for 2.=2 , R / R =0.5 , f=0.45 and mj /me l836.

Fig. 6 Stability boundaries [Eq . (28) ] in the parameter space

(f ~~~ i’w
2 ) for 2.=l, m ./m =1836 and R /R =0 .25 , 0.5 , 0.75.

pe cc 1 e p c

Fig . 7 Stability boundaries [Eq . (28) ] in the parameter space

(f ~~
2 /w 2 ) for R /R 0.5, m /m =1836 and several values of 2..pe ce p C i e

Fig . 8 Plots of (a) growth rate y and (b) real frequency Wr versus

f [Eq . (28) 1 for 
~~~~~~~~~~~~~ 

m1/m l836 , R / R =0.5 and

several values of 2..

Fig. 9 Plots of (a) growth rate y and (b) real frequency Wr 
versus

f [Eq . (28) ] for ~2 /w 2 =0.5 , m /m =1836 , R /R =0 .5 and several
pe ce i e p c

values of 2..

~~~~
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Fig. 10 Plots of (a) growth rate y and (b) real frequency Wr versus

[Eq. (28)] for f 0.l, m~ /m l836 5 R /R =0.5 and

several values of 2..

Fig. 11 Plots of (a) growth rate y and (b) real frequency Wr versus

~~~~~~ [Eq. (28)] for f 0.8, mi/me
l836 , R

~
/R
~~
0.5 and

several values of 2..

Fig. 12 Plots of (a) growth rate y and (b) real frequency Wr versus

2. [Eq. (28)] for 
~~e

/(
~~e

00l
~ 
mj/me 1836, R

~
/R
~~
0.5 and

several values of f.

Fig. 13 Plots of (a) growth rate -y and (b) real frequency Wr

versus 2. [Eq. (28)] for 
~~~~~~~~~~~ 

m1/m l836 ,

R /R =0.5 and several values of f .
P C

Fig. 14 Plots of (a) growth rate y and (b) real frequency Wr

versus Rp/Rc [Eq. (28)] for e~
’w e

0
~
5
~ 

2.=l, m ./m l836,

and several values of f .  
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(a) I
0.6 - 1=2

f = 0.45 RDR [EQ (30)J...~ / I

— = 0.5 I
0.4 Rc 8= l- ’l

WLH 
. 

1

0.2 -

EQ (28)—.
~ 

I

H 0.O — I
0.001 0.01 0.I 11.0

# 2  2 0.91
W pe/W ce

(b) I
2.4 -

1=2
f=0.45 ‘IRDR [EQ (30)]

1.6 - —=0.5 I
~~
C’) I

LII

EQ(28) 
I

0.8 - I

0.0
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